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1. Abstract

The Metropolis-Hastings algorithm [3] [5] is often used to obtain

Markov Chian Monte Carlo samples from highly complex posterior dis-

tributions, such as those involved in full bayesian inference of hyper-

parameters in Gaussian Process models. Here we compare four im-

plementations of the Metropolis-Hastings algorithm in the context of

sampling from the posterior distributions of hyper-parameters in a

Gaussian Process. The implementations are compared in terms of

their initialization biases and convergence rates, as well as in terms

of their performance on higher dimensional data. Our experiments in-

volve sampling from GP posterior distributions using the four different

implementations and comparing the quality of these samples. A dis-

crepency measure is devised based on the Kolmogorov-Smirnov test to

measure the convergence rate of each algorithm. Issues in generating

MCMC samples for high dimensional data are discussed and an opti-

mal approach to sampling is proposed. All of the algorithms in this

paper are implemented in an R package called ‘gpMCMC’ [1].

2. Introduction

Gaussian Processes (GPs) have been shown to provide a robust and

flexible fit for high-dimensional data. Using gaussian likelihoods for the

hyper-parameters in the correlation function, inference in GP models is

analytically tractable. Some applications, however, involve GP models

with highly complex posterior distributions for the hyper-parameters.

In these cases there exist algorithms for maximizing the posterior, yet

sampling from these distributions remains difficult. Markov Chain

Monte Carlo (MCMC) methods are often used to sample from these

nonstandard multivariate distributions using the Metropolis algorithm.
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This algorithm is favoured since it will work for almost any likelihood

function. Unfortunately, it often requires a long time to converge to the

desired stationary distribution. In addition, it is difficult to quantify

the initialization bias of the metropolis algorithm, i.e we don’t know

how long we need to run our algorithm before it converges to the true

distribution that we seek.

In “Optimizing and Adapting the Metropolis Algorithm” [6], Jeffrey

S. Rosenthal reviews a number of different approaches for optimizing

the Metropolis algorithm. This review is primarily concerned with the

Goldilocks principle in relation to Metropolis algorithm step lengths.

Rosenthal shows that if the step length in the Metropolis algorithm

is too small, the Markov chain will not do a good job of exploring

the target density, and will require many iterations to properly con-

verge to the target density. Alternatively, if the step-length is too

large, most proposals are not accepted, and once again many iterations

are required for convergence to the target density. By the Goldilocks-

Principle, the algorithm is optimized by choosing a generating density

(step-length) that results in a moderate acceptance rate. This is also

based on a weak asymptotic result [4] where a random walk MCMC

is shown to converge to a Langevin diffusion process, for which opti-

mization is achieved analytically. Remarkably, the paper finds that the

optimal acceptance rate for a Metropolis algorithm with a particular

multivariate-normal proposal density is ≈ 0.234, in the sense that this

acceptance rate will result in the quickest convergence to the stationary

distribution, asymptotically speaking.

The efficiency of our Markov chain is dependent on more than just

the acceptance rate. The shape of the proposal distribution is also

crucial. Roberts and Rosenthal (2001) [8] show that the optimal shape
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for the proposal distribution is defined by the covariance matrix for

the parameters of the model. In cases where it is difficult to approx-

imate this covariance matrix, adaptive MCMC methods are used to

iteratively approximate the covariance matrix of the parameters from

the samples as they are being generated by the Metropolis algorithm.

However, these adaptive algorithms require additional regularity con-

ditions to be satisfied in order to guarantee convergence, due to the

non-homogeneity of the markov-chain. As an alternative we consider

the laplace approximation to this covariance matrix and discuss its

drawbacks, which are more evident at higher dimensions.

Since our focus is on hyper-parameter inference for Gaussian Pro-

cesses, we investigate four different methods for sampling from the log-

posterior distribution of such GPs, where each method is characterized

by its proposal density. The first two implementations involve univari-

ate step lengths, such that each dimension of the candidate sample in

the Metropolis algorithm is generated separately. These include uni-

formly distributed step lengths and normally distributed step lengths.

The second two implementations involve multivariate steps, the first

of which assumes independence between each hyper-parameter and the

second using a laplace approximation to the covariance of the poste-

rior distribution of hyper-parameters as the covariance of the proposal

density. The optimality of the latter of these methods (involving the

Laplace approximation) is based on a result in Roberts et al. [8]. We

optimize the different implementations by the goldilocks principle. In

the case of the independent multivariate normal proposal density, doing

so simply requires choosing a step-length that results in an acceptance

rate of approximately 0.234.
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In order to assess the convergence rates of the different implementa-

tions, we devise a measure of the discrepancy between two multivariate

empirical distributions. This measure is based on the Kolmogorov-

Smirnov test. Using this discrepancy measure we compare the conver-

gence rates of different MH algorithm implementations. This involves

generating samples from the posterior density of the hyper-parameters

conditional on some data, and then comparing the discrepancy between

these samples and a gold standard.

We perform the aforementioned simulations using both the G-Protein

and Borhole data, however we run into some issues when the Laplace

approximation is used to approximate the covariance of the posterior-

distribution of hyper-parameters for the Borhole data. The G-Protein

data results in well-behaved Laplace approximations to the covariance

of the hyper-parameter distribution. However, the Borhole data yields

some flat profile likelihoods, which result in numerically-singular co-

variance matrices.

2.1. The Metropolis Algorithm. Given an arbitrary starting point,

the M-H algorithm draws samples from a Markov chain that converges

over time to a desired posterior distribution π = p(θ|Y ) ∝ p(Y |θ)p(θ).

Given the current estimate θi, a new proposal θ∗ will be generated via

a transition kernel q(·|θi). The next state θi+1 is defined given the

current state and the kernel:

θi+1 =

θ
∗ with probability α

θi with probability 1− α

where α is equal to:
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α = min

{
1,
p(Y |θ∗)p(θ∗)q(θi|θ∗)
p(Y |θi)p(θi)q(θ∗|θi)

}

It is important to note that the proposal density, as defined by the

kernel, q(·|θi), must satisfy certain regularity conditions required for

convergence of the Markov chain. These conditions are irreducibility

and aperiodicity [7]: meaning that if x and y are points in the domain

of the target density, there must be a non-zero probability of moving

from x to dy in a finite number of iterations. These conditions are

often but not exclusively satisfied when the proposal distribution has

a positive density on the same support as the target density.

The efficiency of the algorithm, i.e. the convergence rate of the

Markov chain, is dependent on both the shape and spread (step-length)

of the proposal density. Both of these factors influence the acceptance

rate α. Roberts et al. (1997) [4] assess the asymptotic properties of an

independent multivariate normal proposal density:

(1) Q = N (0,
l2

d
Id)

Where d is the number of covariates and l is a scaling constant that

we refer to as the step-length. Roberts et al. evaluate the speed of the

algorithm as a function of this step-length as d → ∞, as well as the

asymptotic acceptance rate as a function of the step-length. Further-

more, they show that there is relationship between the speed and the

acceptance rate, such that the optimal acceptance rate is 0.234 for an

independent multivariate normal proposal density as above (1). Differ-

ent implementations of the Metropolis algorithm exist that use other

proposal distributions. One option, for example, is to make univariate

steps. A possible advantage of this method is that the step length can
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be optimized independently for each covariate, although doing so may

be difficult as it is possible that optimization of the step length for one

covariate depends on the chosen step length for other covariates; this,

however, requires further investigation. Another drawback is that the

posterior density must be computed more often.

The shape of the proposal distribution is also important. Roberts

and Rosenthal (2001) [8] prove under strong assumptions that there

exists an optimal Gaussian proposal distribution:

(2) Q = N (0,
2.382

d
Σπ)

Such that Σπ is the covariance matrix of the target density, π. Further-

more, it was shown that the acceptance rate under this proposal dis-

tribution is approximately 0.234. This method therefore has a distinct

logistical advantage over others in that there is no need to optimize

its step length in order to achieve the desired acceptance rate. A dis-

advantage is that the covariance matrix of the target density is often

unknown. Attempts have been made to approximate the covariance

matrix iteratively via something called Adaptive MCMC [9], however

this method requires additional regularity conditions for convergence.

Instead, we consider a laplace approximation to the covariance matrix

of the target distribution, which is computed for the Gaussian Process

posterior distribution in Section 5. Computational issues are some-

times observed and are discussed later.

2.2. Metropolis Hastings MCMC for Gaussian Processes. Con-

sider n replications of k dimensional data. In this report we consider
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the case of Gaussian Processes (GPs) with Gaussian correlation func-

tions between pairs of points:

R(x, x
′
) = exp

{
−

k∑
i=1

θi|xi − x
′

i|2
}

The goal here is to simulate from the distribution of these θ hyper-

parameters in order to do inference and prediction. Using a prior on

the θ hyper-parameters p(θ), the posterior distribution of these GP

hyper-parameters is as follows:

(3) p(θ|y) ∝ π(θ)

(σ̂2)(n−k)/2det1/2(R)det1/2(F TR−1F )

where the maximum likelihood estimate of the variance is :

(4) σ̂2 =
yTR−1y − yTR−1F (F TR−1F )−1F TR−1y

n− k

Where F is the design matrix. For example, in the case of a constant

regression model, F would be a column-vector of ones.

Computing the posterior density here requires an evaluation of the

covariance function, which is on the order of O(kn2), and an inversion

of this covariance function costs on the order of O(n3). This posterior

density needs to be evaluated at every iteration of our M-H algorithm.

This poses a disadvantage to univariate methods in that they may

require up to k times as many iterations in order to achieve similar

convergence rates as methods that involve multivariate proposal den-

sities.
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2.3. Implementations of the Metropolis Algorithm. In this re-

port we consider four separate implementations of the Metropolis Algo-

rithm and compare their convergence rates via a series of Kolmogorov-

Smirnov [2] like tests. Each of the implementations is differentiated by

its specific proposal density:

(1) Univariate Uniform;

(2) Univariate Normal;

(3) Multivariate Gaussian using an Independent Covariance Matrix

(1);

(4) Multivariate Gaussian using the Laplace approximation to the

Covariance Matrix (2).

Assessment of these implementations was performed using three data-

sets of increasing dimension. Here we outline how each of these imple-

mentations were optimized and compared.

For the univariate proposal densities, we attempt to optimize the

step length so that it corresponds to an acceptance rate between 0.2

and 0.4. Although there is no asymptotic result that suggests this ac-

ceptance rate is optimal for the given proposal densities, we are basing

this loose optimization on the Goldilocks-Principle, as it was discussed

in Rosenthal (2014) [6]. Optimization was also performed on proposal

density (2) by finding the step length that corresponds to an acceptance

rate of 0.234. Proposal density (4) did not require previous optimiza-

tion as its optimality is defined by the asymptotic result in [8]. The

laplace approximation requires computation of the second derivative of

the posterior distribution with respect to the theta parameters, evalu-

ated at the approximate posterior mode of the posterior distribution.

Gold standard simulations are generated for each data-set, and the
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convergence rates of each of the implementations are compared using

a measure of discrepancy between each sample and the gold-standard.

3. Measuring the discrepancy between two Empirical

Distributions

A ‘gold standard’ MCMC sample is obtained by running the MH

algorithm for a very large number of iterations (1 hundred million).

The empirical density of this gold standard is designated as being arbi-

trarily different from that of the target distribution. The discrepancy

of a sample from the gold standard is obtained in order to assess the

convergence rates of the different MH implementations to the target

density. We therefore require a measure of the discrepancy between

two multivariate empirical densities.

One option would be to choose the Kolmogorov-Smirnov test as our

measure, which considers the maximum difference between two empir-

ical cumulative distribution functions. This would require considering

each dimension separately. This, however, does not take the correlation

between the hyper-parameters into account. We formulate a measure

of the discrepancy between two two-dimensional empirical cumulative

distribution functions based on the Kolmogorov-Smirnov test. Evaluat-

ing this discrepancy for a particular pair of dimensions involves taking

a grid over the shared domain of the samples and evaluating the em-

pirical cumulative distribution function (CDF) at each square of the

grid. The difference in the empirical CDF for each square is taken be-

tween the gold standard and the sample, and the maximum difference

in these proportions over all grid boxes is taken to be the discrepancy

between the two 2-dimensional distributions. Given two sets of samples

of k dimensions, we measure the maximum discrepancy for each pair
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of dimensions separately and report the maximum discrepancy over all

the pairs. This discrepancy value will therefore be between 0 and 1.

For any two disjoint empirical distributions the discrepancy will be

at its maximum of 1. The discrepancy between any two samples with

substantially different means will be reasonably high (higher than 0.1).

In addition, the discrepancy between samples from differently shaped

distributions is also expected to be quite high. The question remains

as to what is a reasonable value for this discrepancy between two sam-

ples that follow a similarly shaped distribution. This ‘reasonable value’

should depend on the nature of the distribution.

In order to assess the performance of our measure, we simulate two

samples of size 100000 from bivariate normal distributions. One distri-

bution has an independent covariance matrix with variances of 1, while

the other has covariances of 0.5. Given ten pairs of these samples, the

average discrepancy between each pair samples was found to be 0.079,

whereas the average discrepancy between two samples with identical

covariance matrices was found to be 0.002. This gives us a perspective

on the range of discrepancy values between two similarly distributed

samples. Furthermore, we find the specific grid square at which this

maximum difference of 0.08 is observed. We find that for two bivariate

distributions with equal means, this maximum is observed at the cen-

ter. This is expected as the value of the CDF at the center grid point

is over the top left quadrant of the grid. Evaluating the differences

between the upper left quadrants of the grid between two empirical

CDFs seems to most accurately identify differences in the covariance

matrix.
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Figure 1. Samples from two different bivariate normal
distributions with identical means. On the left the co-
variance between the two dimensions is 0.5 and on the
right it is 0. The discrepancy between these two samples
is 0.078.

Figure 2. Heat-map of the differences in CDF values
between grid points for the two samples above illustrated
in Figure 1. We find that the maximum difference of 0.08
is at the center.
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4. Results

First we investigate the convergence rates of the four MH implemen-

tations using the G-Protein data. We highlight a computational issue

that arises for higher dimensional data using a simple example involv-

ing a fabricated data-set, and propose methods for circumventing this

issue. Finally we evaluate the performance of our four implementations

on the Borhole data, for which this computational issue arises. Recall

that our four implementations are: 1) Univariate Uniform, 2) Univari-

ate Normal, 3) Multivariate Gaussian with and independent covariance

matrix, 4) Multivariate Gaussian using the Laplace approximation to

the covariance. We will refer to these methods as 1) uniform, 2) normal,

3) multivariate-normal, 4) laplace.

4.1. G-Protein. We simulate using MCMC from the posterior of

a Gaussian Process used to fit the G-Protein data-set. This is a 4-

dimensional data-set where all parameters are important in the model.

We use an exponential prior for the posterior distribution of the theta

hyper-parameters with lambda equal to 0.1. Below we trace the accep-

tance rate of three of the four Metropolis algorithms we are testing and

find the point at which the acceptance rate is approximately 0.234. The

purpose of this is to loosely optimize these algorithms based on results

discussed in “Optimizing and Adapting the Metropolis Algorithm” [6].

The Laplace method has a fixed proposal distribution, the optimality

of which is based on results in Roberts and Rosenthal (2001) [8].
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Figure 3. Acceptance rate of each MH implementation
against the step-length, used to optimize the step-length
for each method.
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Four different gold standard samples of a million samples each are

obtained, one for each implementation, using an Exponential prior with

a lambda value of 0.1. These samples, as well as all future G-Protein

MCMC samples discussed are obtained using the optimal step-lengths

found via Figure 3. We evaluate the discrepancy between all the pairs

of gold standard samples and find that the maximum discrepancy ob-

served is 0.017 between the multivariate-normal and laplace methods.

We therefore use this level of discrepancy as a benchmark for good

convergence. It can be seen from Figure 4 that the profile empiri-

cal density for each theta hyper-parameter is relatively identical under

each implementation of the MH algorithm.
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Figure 4. Empirical Densities for the gold standards of
each Theta hyper-parameter in a GP fit of the G-Protein
data.

Finally we evaluate the discrepancy of each implementation against

the number of posterior density evaluations. We find, as expected, that

the laplace and multivariate normal methods converge slightly faster

than the univariate methods. It should be noted that for each new

proposal, the univariate methods require k times as many posterior
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evaluations as the multivariate methods (where k is the number of

dimensions, 4 in the case of the G-Protein data). Therefore the number

of samples generated for a fixed number of posterior evaluations is k

times higher for the multivariate methods compared to the univariate

methods.

Figure 5. Convergence rate for each implementation in
terms of our devised KS distance against the number of
posterior evaluations.

4.2. Simple Example. For high dimensional data-sets, we are more

likely to observe that some variables have a negligible effect on our

model. For these variables, the GP fit for the hyper-parameter theta
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will be close to zero, resulting in a non-Gaussian profile likelihood for

there parameters. Below we highlight a simple 2-dimensional example

with one relevant variable and one that has no effect on the response.

The uniform, normal, and multivariate methods will simulate pro-

posals as before. The laplace approximation will yield a non positive

semi-definite matrix due to the non-Gaussian shape of the likelihood.

This prevents us from simulating from a multivariate normal distri-

bution with the covariance matrix given by the laplace approximation.

This is the main drawback of this method. Fortunately we can use vari-

able selection to avoid this issue by setting a threshold for the theta

hyper-parameters, such that all parameters with a value lower than the

threshold will be simulated separately using one of the other MH im-

plementations, or otherwise not simulated at all. The approach taken

towards simulating these near-zero thetas is not so crucial as they will

have little effect on the model.
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Figure 6. Likelihood for a simple example exhibiting a
non-Gaussian likelihood with the true value of Theta 1
being 20 and the true value of Theta 2 being 0.

4.3. Borhole. The borehole data is 8-dimensional, however, three of

the variables have little effect on the model and have relatively flat like-

lihoods. This can be seen from the acceptance rate versus step length

plot for the uniform MH method, where three variables have a very

high acceptance rate regardless of the step length.
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Figure 7. Acceptance rates versus step length for
variables simulated using the univariate uniform MH
method. Three variables have distinctly flat likelihoods,
x2, x3, and x5.

In order for the laplace approximation of the covariance to work, we

subset the data containing variables 1,4,6,7,8 and determine the laplace

approximation to the covariance for these variables only. Samples for

the remaining variables (2,3, and 5) are generated using the uniform

method. Details of how these variables are sampled are not important
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as they have little effect on the model.

Figure 8. Convergence rate of each method using the
borhole data, displayed as KS-distance against number
of posterior evaluations. Sampling was performed sepa-
rately for the set of negligible variables, x2, x3, and x5
for the laplace method.

The convergence rate of each method is compared in Figure 8, where

we see that the laplace method is far superior. It seems to be the

case, however, that the superiority of the laplace method comes as

a result of the fact that the negligible variables are being sampled
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separately. This is shown in Figure 9, where we sample each set of

variables separately (as was done for the laplace method in Figure 8)

for all methods and compare their convergence rates. Figure 9 shows an

improved convergence rate for all the other methods, with the laplace

method still being superior.

Figure 9. Convergence rate of each method using the
borhole data, displayed as KS-distance against number
of posterior evaluations. Sampling was performed sepa-
rately for the set of negligible variables, x2, x3, and x5
for all methods.
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5. Discussion

Of the four methods we have discussed, the laplace method consis-

tently exhibits the fastest convergence. In addition, the laplace method

requires significantly less optimization in that the step length is fixed

by the Fisher approximation to the covariance. Finding the optimal

step-length is more costly than computing the Fisher approximation to

the covariance.

The laplace method runs into some issues for data where there are

negligible variables, which result in near-zero theta hyper-parameters.

The near-zero hyper-parameters result in non-Gaussian likelihoods,

which cause the laplace method to fail due to our inability to sam-

ple from a multivariate normal distribution with a non semipositive-

definite covariance matrix. We circumvent this issue by segregating

the data based on which theta values are below some threshold, and

conducting two separate simulations on each set of variables. Doing so

allows us to implement the laplace method. Furthermore, doing so for

the remaining methods also improves their performance. We are un-

sure why this is the case, as the likelihood for the remaining ‘negligible’

variables is relatively flat and most proposals are accepted.
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