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1. OVERVIEW

Modelling spatial data with gaussian processes is a common approach for
geo-statistical analyses. Typically, it is assumed that spatially referenced
observations are multivariate-normally distributed with a covariance matrix
that depends on unknown parameters 6.

(1) y ~ N(XB, R(0))

Where the covariance matrix R(6) defines the correlation between any
two given observations. This covariance matrix completely specifies the
gaussian process, as the regression parameters B are a function of R(6) as
such,

B _ (FTR—IF)—lFTR—].y
where F is a vector of the regression functions, and is in the constant case
an n x 1 vector of 1s.

A number of different correlation functions are commonly used for defin-
ing the values in this covariance matrix R(6), some of which will be discussed
below. Inference on these 6 parameters changes depending on the correla-
tion function used. It is common for a correlation function to assume that
points that are closer together have a higher correlation, for example in the
gaussian correlation function the euclidean distance is used:

k
(2) R(z,z') = R(#) = H erp {—Hj\xj — x;|2
j=1

Inference on these theta parameters in this case requires maximization of
the following log-likelihood,
(3) —gln(62(R)) - %ln|R] + const
Evaluation of this log-likelihood, as well as derivatives of this likelihood,
involves taking the inverse and determinant of the covariance matrix R.
This is implemented using the cholesky decomposition, which requires n3
floating point operations, where n is the number of observations. This cost
is exacerbated by the use of iterative procedures for estimation of the 6
parameters.

Prediction is also limited by this computational complexity. Given a
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gaussian process z(s), we wish to predict z(z*) given the n observations and
a new z* € D. To do this we take
(4) 2z =r"R'Z
where Z = (Z(x1), ..., Z(xy,)), and r¥ = R(z;,2*). In this case the best
linear unbiased predictor (BLUP) can be written as Z(z*) = r*u, with
Ru = Z. Solving this system of linear equations to find the inverse of the
covariance matrix is done most efficiently using the cholesky decomposition.
The methods discussed in this manuscript are primarily concerned with
lowering the computational cost of maximizing this log likelihood for large n.
These methods achieve improved computational efficiency by dimensionality
reduction via ”"low-rank” models or by assuming sparsity.

2. Low-RANK MODELS

Low-Rank models are representations of the spatial process on a lower
dimensional subspace, where a subset of the n original locations r < n is
considered. These processes result in a reduced computational complexity
of O(nr? +13) =~ O(nr?).

One such representation involves dimensionality reduction of a spatial
process that is specified by the convolution of i.i.d random variables (Hig-
don 2001). There are a number of benefits to this formulation aside from
dimensionality reduction. Features such as non-stationarity, edge effects,
non-Gaussian fields, and alternative space-time models can easily be accom-
modated using this formulation. A gaussian process z(s) over spatial region
S can be constructed by convolving a continuous latent model z(s),s € S
with smoothing kernel k(s), such that

2(s) = / k(u — s)(u)du

S
For all s € S. The resulting covariance function for this process depends
only on the displacement vector d = s — s .

e(d) = Cov(x(s), 2(s)) = /S k(u — d)e(u)du

Based on the convolution theorem for fourier transforms, Higdon shows
that there exists a one to one relationship between the smoothing kernel
and the covariance matrix, given that [p, k(s)ds < oo and [p, k?(s)ds < oo,
where k(s) is the smoothing kernel, or given that the covariance matrix is
integrable and positive definite.

Dimensionality reduction is achieved by restricting the latent process
x(s) to locations si, ..., 8, where m < n. In this case, a small number of
parameters x(sy), ..., 2(Sn, ) control the entire spatial process. The covariance
function is determined by the latent process and the smoothing kernel,

2(s) = wjk(s — )
j=1
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The disadvantages to this formulation are shared with other methods that

involve dimensionality reduction: When n is large, simulation studies sug-
gest that m must be fairly large to adequately approximate the full model?.
In addition, these models result in poor likelihood approximations when
neighbouring observations are strongly correlated and the spatial signal is
far greater than the noise.

3. SPARSE-COVARIANCE METHODS

Sparse-covariance methods assume that the correlation between non-
neighbouring observations is effectively zero and therefore distant observa-
tions should be considered independent. One example of a sparse-covariance
method is the method of covariance-tapering, as described in Furrer et. al.
(2006).

Consider a gaussian process z(s) with covariance function R(s, s/), where
s € D C R% observed at n locations si, ..., s,. Covariance tapering delib-
erately introduces zeroes into the covariance matrix to make it sparse, in
such a way that the positive definiteness of the matrix is maintained. Naive
predictions can then be obtained by replacing R and r in (3) and (4) with
the new, tapered, positive definite covariance matrix, Ryqp.

The effect of 'misspecifying’ the covariance function is covered in a num-
ber of articles by Stein (1988, 1990, 1993), which investigate the asymptotic
optimality and efficiency of an incorrect covariance function. Application of
this theory is reinterpreted in Furrer et. al. in order to evaluate the increase
in squared prediction error that results from a deliberately modified covari-
ance as in the covariance tapering method. Using spectral densities, Furrer
et. al. prove the asymptotic equivalence of the original predictor in (4) and
the tapered predictor for a Matern covariance function.

The advantage of this model over other sparse models is that it offers
fully process based inference.

4. NEAREST-NEIGHBOURS GAUSSIAN PROCESSES

Limiting the covariance function to a local neighbourhood is not a new
idea. There are a number of ways to achieve this. One way described by Gri-
bov and Krivoruchko (2004) implements covariance tapering using a moving
neighbourhood to generate continuous prediction and prediction standard
error surfaces. In this case the tapering is dependent on the prediction and
the data location.

Datta et. al. (2014) claims that none of the previously mentioned spatial
processes unify estimation, prediction, and model assessment. This claim
is used as motivation for the construction of a well-defined spatial process
named Nearest-Neighbor Gaussian Process (NNGP). Based on work in Vec-
chia (1988) and Stein et. al. (2004) that shows how likelihood approxi-
mations using lower-dimensional conditional distributions result in proper
densities under general conditions, Datta. et. al. show that these densities
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are distributed according to finite-dimensional realizations of an NNGP. This
well-defined process adopts a Bayesian modelling framework using posterior
predictive distributions in order to demonstrate its inferential capabilities.
Furthermore, a computationally efficient Gibbs sampling algorithm is devel-
oped to conduct inference.

Below we summarize the formulation of the NNGP that provides the ba-
sis of the framework for Bayesian estimation and prediction with this flexible
setup.

Given z(s) ~ GP(0, R(-,-|#)), a zero-centred g-variate Gaussian process,
where z(s) € R9*! for all s € D C RY, the cross covariance function R(-,-|0)
maps a pair of locations s and ¢ in D x D into a ¢ X g real valued ma-
trix C(s,t) with entries cov {w;(s), w;(t)}. Let S = {s1,...,s;} be a fixed
finite collection of locations in D, called the reference set, and z4 denotes
the realizations of the gaussian process z(s) over a finite collection of loca-
tions A. This gives z; ~ N(0,Cs(6)), where z, = (2(s1)’, 2(s2) , ..., 2(sz) )’
and C,(0) is a positive definite gk x ¢k black matrix with C(s;,s;) as its
blocks. The joint density of z is written as p(z) = Hle p(2(s;)|2<i), where
zei = (2(s1), 2(s2) s o0y 2(si21)) .

Dimensionality reduction is achieved when instead of considering z.;, a
smaller set N(s;) is defined for every s; € S, consisting of neighbours of s;.
The following composite likelihood is obtained:

k

(5) 15(25) = HP(Z(SZ‘)’ZN(Si))

=1

Datta et. al. prove that if we view the pair {S, Ng} as a directed graph
G with vertices at sy, ..., Sk, and directed edges to every vertex s; from all
locations in N(s;), then p in (5) is a valid joint distribution. Furthermore,
given that N (s;) identifies the m nearest neighbours from the past, ensuring
an acyclic G, it is proven that p is a Gaussian density with a sparse precision
matrix. Datta et. al. proceeds to specify a full posterior distribution given
priors on 3, 6, and Tj2, where Tj2 are the diagonal elements of a dispersion
matrix D that specifies the covariance of the random errors for each ob-
servation, €(t) ~**? N(0, D). This posterior is used for an implementation
of Gibbs algorithm, which facilitates inference at a reduced computational
complexity.

5. CONCLUSION

We have highlighted a number of methods for curbing the computational
cost of doing inference, prediction, and model assessment, for a Gaussian
process on a large spatial data-set, as well as the advantages and disadvan-
tages of specific methods. The research in this area is quite rich, as there
are multiple different approaches in both the frequentist and bayesian in-
terpretations. The Datta et. al. offer a holistic bayesian approach that
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facilitates fully model-based prediction and inference, as well as model as-
sessment. This approach is optimal in some context, however, other methods
offer practical benefits and features that may be preferred depending on the
application or context of the problem being solved.
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