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1. summary

The Bayesian Information Criterion (Schwarz, 1978) is often used for

variable selection, in that the preferred model in a model space is found by

minimizing the BIC over the models in that space. Similar to the Akaike

Information Criterion (AIC), the BIC penalizes complexity. The BIC has

been criticized as being too liberal in that it selects unnecessary covariates

when the covariate space is large. In their 2008 paper, ”Extended Bayesian

Information criterion for model selection with large model space”, Chen and

Chen introduce an extended family of Bayes Information Criteria that re-

sults in a more tightly controlled false-discovery rate than the ordinary BIC.

The consistency of this extended BIC is established, allowing the number

of covariates to approach infinity with the sample size, and in doing so, it

is revealed that the ordinary BIC is likely inconsistent when the number of

covariates pn >
√
n, where n is the sample size.

In this article we attempt to prove that there is a positive probability of

inconsistency when the number of covariates p ≥
√
n for the ordinary BIC.

We identify a counter-example where the true model, s0, is empty. In this

case a one-covariate model will be selected over the true model when any

one of the one-covariate loglikelihoods exceeds the likelihood of the empty

model by 0.5log(n). The goal is to show that the maximum inflation in the
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log likelihood is of order 0.5log(n) when we set P =
√
n, meaning that a

non-empty model will be selected with positive probability when P ≥
√
n.

In this counterexample we only get as far as proving a positive proba-

bility for inconsistency of the ordinary BIC at P ≥
√
nlog(n). We take a

guess that our distance from the true result comes from considering only

one-covariate models as an alternative to the empty model, rather than all

models in the space.

2. Bayesian Information Criterion

Let {(yi, xi) : i = 1, ..., n} be independent observations. The conditional

density of yi given xi is f(yi|xi, θ) where θ ∈ Θ ⊂ RP , with P being a

positive integer. The likelihood function of θ is given by

Ln(θ) = f(x; θ) =
n∏

i=1

f(yi|xi, θ)

Where Y = (y1, ..., yn). Let s be a subset of {1, ..., P}. We denote by θ(s)

the parameters θ such that those components outside s are set to zero or

some known values. The BIC selects the model that minimizes the following

quantity:

BIC(s) = −2logLn{θ̂(s)}+ v(s)log(n)

where θ̂(s) is the maximum likelihood estimator of θ(s) and v(s) is the

number of components in s. The first term is a likelihood, while the second

term is a penalty on the complexity of the model. Minimizing the BIC is a

compromise between maximizing the likelihood and minimizing the number

of covariates.

3. Proof

We begun by constructing a likelihood ratio test statistic. Under our

null hypothesis, we have that the true model, s0, is the empty one. Our
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alternative hypothesis involves a particular one covariate model being the

true model. We guess that it would be more informative to have a more

composite alternative hypothesis. We are not considering all P̃ -covariate

models where P̃ ∈ {2, ..., P} .

Our likelihood for our empty model is Ln{φ} and the likelihood under the

one covariate model is Ln{s1}. We write the BIC under each hypothesis as:

BIC(φ) = −2logLn{φ}

BIC(s1) = −2logLn{s1}+ log(n)

Therefore we choose a particular one covariate model s1 over φ when

logLn{s1} − logLn{φ} >
1

2
log(n)

We now construct our counterexample, with our null hypothesis being

the empty model, and our alternative being a particular one covariate model

such that,

H0 : Yi = β0 + εi

H1 : Yi = x1,iβ1 + β0 + εi

Where Yi ∼ i.i.d N(0, 1) and εi ∼ N(0, 1). Under these two hypotheses,

our log likelihoods are the following:

logLn{φ} = −1

2

n∑
i=1

(Yi − β̂0)2

logLn{s1} = −1

2

n∑
i=1

(Yi − β̃0 − β̃1X1,i)
2

where

β̂0 = Ȳ
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and so

logLn{φ} = −1

2
(n− 1)S2

n

In addition,

β̃0 = Ȳ − β̃1X̄, β̃1 =

∑n
i=1(Xi −X)(Yi)∑n
i=1(Xi − X̄)2

And therefore we can write:

logLn{s1} = −1

2

n∑
i=1

(Yi −
∑n

i=1(Xi −X)(Yi)∑n
i=1(Xi − X̄)2

X̄ −
∑n

i=1(Xi −X)(Yi)∑n
i=1(Xi − X̄)2

X1,i)
2

= −1

2

n∑
i=1

(Yi −
∑n

i=1(Xi −X)(Yi)∑n
i=1(Xi − X̄)2

(X̄ −X1,i))
2

= −1

2

n∑
i=1

[
(Y 2

i )− 2

∑n
i=1(Xi −X)(Yi)∑n
i=1(Xi − X̄)2

(X̄ −X1,i)Yi +

(∑n
i=1(Xi −X)(Yi)∑n
i=1(Xi − X̄)2

(X̄ −X1,i)

)2
]

= −1

2
(n− 1)S2

n −
1

2

(
∑n

i=1(Xi −X)(Yi))
2∑n

i=1(Xi − X̄)2

= −1

2
(n− 1)S2

n

(
1−

(
∑n

i=1(Xi −X)(Yi))
2∑n

i=1(Xi − X̄)2
∑n

i=1(Yi)
2

)
= −1

2
(n− 1)S2

n

(
1− ρ2XY

)

The number of one-covariate models under our alternative hypothesis is

P . Therefore, the likelihood that at least one of the P one-covariate model

likelihoods exceeds the likelihood of our true empty model s0 by 0.5log(n)

is equal to the probability that the maximum of P one-covariate likelihoods

will exceed the likelihood of the empty model by 0.5log(n). We write this

probability in the form below:

P

{
maxs=1,...P

(
−1

2
(n− 1)S2

n

(
1− ρ2XY

))
−
(
−1

2
(n− 1)S2

n

)
≥ 0.5log(n)

}

= P

{
maxs=1,...P

(
−1

2
(n− 1)S2

n

(
1− ρ2XY

))
≥ 0.5log(n)−

(
1

2
(n− 1)S2

n

)}
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= 1−P
{
maxs=1,...P

(
−1

2
(n− 1)S2

n

(
1− ρ2XY

))
< 0.5log(n)−

(
1

2
(n− 1)S2

n

)}
Given that our observations are independent, we can write our probability

as the following:

= 1− P
{
−1

2
(n− 1)S2

n

(
1− ρ2XY

)
< 0.5log(n)−

(
1

2
(n+ 1)S2

n

)}P

= 1− P
{
−1

2
(n− 1)S2

n

(
1− ρ2XY

)
+

(
1

2
(n+ 1)S2

n

)
< 0.5log(n)

}P

= 1− P
{

(n− 1)S2
nρ

2
XY < log(n)

}P
= 1− P

{
(n− 1)S2

nρ
2
XY < log(n)

}P
= 1− P

{
(
∑n

i=1(Xi −X)(Yi))
2∑n

i=1(Xi − X̄)2
<
log(n)

n− 1

}P

= 1− P
{
β̃1

2
S2
x <

log(n)

n− 1

}P

= 1− P

{∣∣∣β̃1Sx∣∣∣ <√ log(n)

n− 1

}P

At this point, for the purpose of this counter example, we regard Sx as a

constant and set Sx = 1. Furthermore, since we will eventually be inves-

tigating the asymptotic result, we replace n − 1 with n. Disclaimer: I am

not so sure about how these steps can be justified concretely. We therefore

have,

1− P
{√

n
∣∣∣β̃1∣∣∣ <√log(n)

}P

= 1− P
{
−
√
log(n) <

√
nβ̃1 <

√
log(n)

}P

= 1−
(
P
{√

nβ̃1 <
√
log(n)

}
− P

{√
nβ̃1 < −

√
log(n)

})P
We use the following result for the finite sample distribution of β̃1, using

the fact that the true value of β̃1 = 0, and that σ2 = 1 for this example:

√
n(β̃1 − 0) ∼ N(0, 1)
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and so

1−
(

Φ(
√
log(n))− Φ(−

√
log(n))

)P
= 1−

(
Φ(
√
log(n))− 1 + Φ(

√
log(n))

)P
= 1−

(
2Φ(

√
log(n))− 1

)P
Now, we approximate using the tail bounds of the normal distribution, for

example

1− φ(x) =
φ(x)

x

I am not so sure about the assumptions and conditions for this approx-

imation, but in any case we set x =
√
log(n), so that we can write our

probability as the following:

1−
(

2Φ(
√
log(n))− 1

)P
= 1−

(
2(Φ(

√
log(n))− 1) + 1

)P
= 1−

(
−2(1− Φ(

√
log(n))) + 1

)P
= 1−

(
−2(

Φ(
√
log(n))√
log(n)

) + 1

)P

= 1−

(
−2(

e−
1
2
log(n)√
log(n)

) + 1

)P

= 1−

(
1− 2√

nlog(n)

)P

We want to find the asymptotic behaviour of this probability, so we take

the limit as n→∞

1− lim
n→∞

(
1− 2√

nlog(n)

)P

Now we use the following property of the exponential function,

e−x = lim
n→∞

(
1− x

n

)n
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we see that setting P =
√
nlog(n), we obtain a positive probability

1− lim
n→∞

(
1− 2√

nlog(n)

)√nlog(n)

= 1− e−2 > 0

Where if we had set P =
√
x, this probability would have been zero.

4. conclusion

We have shown that when P ≥
√
nlog(n), a one covariate model will

be chosen over the true, empty model, with positive probability. We guess

that had we formulated a more composite alternative hypothesis, our result

would have been stronger, as was mentioned in the paper.
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