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1. Background

The DACE (cite) stochastic process model uses a correlation function
with unknown values for its parameters for the Multivariate Gaussian. Using
maximum likelihood estimates for the correlation parameters in the corre-
lation function, the DACE model has been shown to provide a robust and
flexible fit for high-dimensional data (cite). This does not seem to be the
case with Bayesian estimates for the correlation parameters, which result
in a significant increase in error for cross-validated prediction of a response
variable. In an attempt to survey the Bayesian estimate and the reasons for
its misgivings, we obtain the first and second derivatives of the log-likelihood
with respect to the k correlation parameters θj , j ∈ {1, ..., k}. The Hessian
matrix (Second derivative) will allow us to obtain the information, which
will give us an approximation of the variance of these parameters.

2. Multivariate Gaussian

1

(2π)n/2(σ2) |R|1/2
exp

[
−(y −BF )′R−1(y −BF )

2σ2

]
R in the above distribution is the correlation matrix, for which the entries

are defined, for example by the power-exponential correlation, for which pj
is known, and with pj = 2 it becomes the gaussian correlation:

R(x, x′) =
k∏
j−1

exp[−θj |xj − x′j |pj ]

There are n data points x, where each x is a k-dimensional data point,
and there exists a θj for each dimension of the data. Therefore, every θj
coefficient is used to determine every entry of the correlation matrix R. The
derivative of the correlation matrix at a particular point can be determined
with respect to a particular θj as such:

dR(x, x′)

dθj
= −|xj − x′j |pjR(x, x′)

1
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3. Maximum Likelihood Estimates

The maximum likelihood estimates for the regression parameters B and
the variance σ2 are as follows:

(1) B̂ = (F TR−1F )−1F TR−1y

(2) σ̂2 =
(y − B̂F )′R−1(y − B̂F )

n

4. Log Likelihood

The log likelihood, when evaluated with the maximum likelihood esti-
mates for the regression parameters and the variance, is the following:

(3) −n
2

ln(σ̂2)− 1

2
ln |R|+ const

To take the derivative of this log-likelihood with respect to the θj pa-

rameters, we must consider how σ̂2 is a function of the correlation matrix

R. This results in the following expression for σ̂2:

(4) σ̂2 =
yTR−1y − yTR−1F (F TR−1F )−1F TR−1y

n

5. First Derivative of Log Likelihood with respect to θj
parameters

(5)
d

dθj

[
−n

2
ln(σ̂2)− 1

2
ln |R|

]
= − n

2σ̂2

∂σ̂2

∂θj
− 1

2
Trace[R−1

∂R

∂θj
]

The expression in (5) was evaluated using the fact that d
dx ln |A| = Tr[A−1 dAdx ].

The problem lies in evaluating ∂σ̂2

∂θj
: Using product-rule and chain-rule and

considering that, ∂R
−1

∂X = −R−1 ∂R∂XR
−1, we show how n∂σ̂

2

∂θj
can be expressed

below.

−yTR−1 ∂R
∂θj

R−1y

+2yTR−1
∂R

∂θj
R−1F (F TR−1F )−1F TR−1y

−yTR−1F (F TR−1F )−1F TR−1
∂R

∂θj
R−1F (F TR−1F )−1F TR−1y
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where R−T is equal to R−1 since R is a symmetric Matrix.

We can then substitute in B̂ = (F TR−1F )−1F TR−1y, so that our expres-
sion becomes the following:

−yTR−1 ∂R
∂θj

R−1y

+2yTR−1
∂R

∂θj
R−1F B̂

−B̂
T
F TR−1

∂R

∂θj
R−1F B̂

The above sum is rearranged as the following:

(6) n
∂σ̂2

∂θj
= −(y − F B̂)TR−1

∂R

∂θj
R−1(y − F B̂)

6. Computing the First Derivative

We decompose the correlation matrix R into an upper triangular matrix
multiplied by its transpose, and this allows us to solve for a new vector, ỹ,
and a new matrix F̃ .

(7) R = UTU ∴ R−1 = U−1U−T

(8) U−T y = ỹ ∴ UT ỹ = y

(9) U−TF = F̃ ∴ UT F̃ = F

The new B̂ expression is as follows:

B̂ = (F̃ T F̃ )−1F̃ T ỹ

We then apply a QR decomposition to F̃ . We will use the notation ’T’
instead of ’R’ to avoid ambiguity. The QR decomposition we use will result
in a square T and rectangular Q, where QTQ = I, but QQT 6= I.

(10) F̃ = Q1T1
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This greatly simplifies our B̂ expression due to the T ’s canceling out:

(11) B̂ = (T T1 Q
T
1Q1T1)

−1T T1 Q
T
1 ỹ = T−11 QT1 ỹ

When we take the Cholesky decomposition of the R−1 matrices and the
QR decomposition of the F̃ matrices in the derivative expression in (6), we
obtain the following:

(12) −(ỹ −Q1T1B̂)TU−T
∂R

∂θj
U−1(ỹ −Q1T1B̂)

Plugging in our expression for B̂ (11) to our derivative expression (12)
results in the following simplification:

(13) −(ỹ −Q1Q
T
1 ỹ)TU−T

∂R

∂θj
U−1(ỹ −Q1Q

T
1 ỹ)

The next step is to back-solve for the Ũ = U−1(ỹ −Q1Q
T
1 ỹ) vector.

(14) ŨT
∂R

∂θj
Ũ

Finally we can compute our full derivative,

(15)
d

dθj

[
−n

2
ln(σ̂2)− 1

2
ln |R|

]
= − 1

2σ̂2
ŨT

∂R

∂θj
Ũ − 1

2
Trace[R−1

∂R

∂θj
]

The results of this first derivative calculation correspond to finite differ-
ence approximations of the derivative, as shown in the figures below:
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Figure 1. Derivative at various theta

Figure 2. Finite Difference approxi-
mation of derivative at various theta
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7. Second Derivative of the Log Likelihood

To obtain the Hessian of the log-likelihood with respect to the k θ pa-
rameters, we differentiate with respect to all possible pairs of θ parameters.
The Hessian matrix H(k, k) is a symmetrical matrix that contains at each
point H(i, j) the resulting second derivative with respect to each pair θj and
θi, where i, j ∈ {0, ..., k}. From the first derivative of the log-likelihood (5)
we derive the following expression for our second derivative with respect to
θj and θi:

(16)
∂2LogLikelihood

∂θj∂θi
=

(
n

2(σ̂2)2
�
∂σ̂2

∂θi
�
∂σ̂2

∂θj
)−(

n

2σ̂2
�
∂2σ̂2

∂θj∂θi
)−1

2
Trace

[
R−1

∂2R

∂θj∂θi
−R−1

∂R

∂θi
R−1

∂R

∂θj

]
The first derivative terms and the σ̂2 term are given (6),(4). The terms

inside the Trace function can be solved for using forward and backwards
substitution, this will be done in the next section. This leaves one last term,
the second derivative of σ̂2 with respect to θj and θi. Using the product rule

five times on (6) we express n ∂2σ̂2

∂θj∂θi
below.

(17) n
∂2σ̂2

∂θj∂θi
=

−2

[
∂

∂θi
(y − FB̂)T

]
R−1

∂R

∂θj
R−1(y − FB̂)

+2(y − FB̂)TR−1
∂R

∂θi
R−1

∂R

∂θj
R−1(y − FB̂)

−(y − FB̂)TR−1
∂2R

∂θj∂θi
R−1(y − FB̂)

Where the vector ∂
∂θi

(y−FB̂) is expressed below, using the definition of

B̂ in (1).

(18) −F (F TR−1F )−1F TR−1
∂R

∂θi
R−1F (F TR−1F )−1F TR−1y

+F (F TR−1F )−1F TR−1
∂R

∂θi
R−1y

Since

B̂ = (F TR−1F )−1F TR−1y

,
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We can factor the derivative (18) into the following form:

(y − FB̂)TR−1
∂R

∂θi
R−1F (F TR−1F )−1F T

therefore,

(19) n
∂2σ̂2

∂θj∂θi
=

−2(y − FB̂)TR−1
∂R

∂θi
R−1F (F TR−1F )−1F TR−1

∂R

∂θj
R−1(y − FB̂)

+2(y − FB̂)TR−1
∂R

∂θi
R−1

∂R

∂θj
R−1(y − FB̂)

−(y − FB̂)TR−1
∂2R

∂θj∂θi
R−1(y − FB̂)

We find that we can further factor this overall expression into the follow-
ing:

(20) n
∂2σ̂2

∂θj∂θi
=

(y−FB̂)TR−1

[
2
∂R

∂θi
R−1 ∂R

∂θj
− 2

∂R

∂θi
R−1F (FTR−1F )−1FTR−1 ∂R

∂θj
− ∂2R

∂θj∂θi

]
R−1(y−FB̂)

= (y − FB̂)TR−1

[
2
∂R

∂θi
R−1(I− F (FTR−1F )−1FTR−1)

∂R

∂θj
− ∂2R

∂θj∂θi

]
R−1(y − FB̂)

It is evident that the above expressions are symmetrical in terms of inter-
changing θi with θj , therefore satisfying this property of a second derivative.

8. Computing the Second Derivative

The vector (y− FB̂) above can be computed using the expression for B̂
in (11):

(21) (y − FT−1QT ỹ)

To compute the second derivative of the variance, we decompose the
inverse of the correlation matrix using a Cholesky decomposition,

R−1 = U−1U−T

then forward-solve

F̃ = U−TF

F̃ undergoes a QR-decomposition

F̃ = Q(n,m)T(m,m)
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we now rewrite our expression for the second derivative of the variance with
respect to θj and θi as such:

(22) n
∂2σ̂2

∂θj∂θi
=

(y−FT−1QT ỹ)TU−1U−T
[
2
∂R

∂θi
R−1 ∂R

∂θj
− 2

∂R

∂θi
U−1QQTU−T

∂R

∂θj
− ∂2R

∂θj∂θi

]
U−1U−T (y−FT−1QT ỹ)

(y−FT−1QT ỹ)TU−1U−T
[
2
∂R

∂θi
U−1

[
I−QQT

]
U−T

∂R

∂θj
− ∂2R

∂θj∂θi

]
U−1U−T (y−FT−1QT ỹ)

The latter of the above expressions contains terms already evaluated for the

first derivative, with the exception of ∂2R
∂θj∂θi

.

Below we show how contour plots of the second derivative at various theta
for a two-dimensional system correspond to finite-difference-approximations
of the same second derivatives.
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9. Bayesian Case

When a bayesian posterior is determined for the theta parameters, our
derivative calculation changes. It can be shown that the posterior distribu-
tion is a t-distribution with n-k degrees of freedom (where k is the number
of regression parameters). Consequently the variance becomes the following:

(23) σ̂2 =
yTR−1y − yTR−1F (F TR−1F )−1F TR−1y

n− k
The logarithm of the posterior for θ is then differentiated.

(24) p(θ|y) ∝ π(θ)

(σ̂2)(n−k)/2det1/2(R)det1/2(F TR−1F )

(25) ln(p(θ|y)) = ln(π(θ))− n− k
2

ln(σ̂2)− 1

2
ln |R| − 1

2
ln
∣∣F TR−1F ∣∣

The derivative with respect to θ is therefore:

∂ln(p(θ|y))

∂θ
=

1

π(θ)

∂π(θ)

∂θ
−n− k

2σ̂2
ŨT

∂R

∂θ
Ũ−1

2
Trace[R−1

∂R

∂θ
]−1

2
Trace[(F TR−1F )−1F TR−1

∂R

∂θ
R−1F ]

This solution depends on the choice of prior, π(θ).

10. Fast Bayesian Inference Case

The Fast Bayesian Inference Algorithm requires a Laplace approximation
of the likelihood where θ is transformed logarithmically such that τ = ln(θ).
The formula for the variance remains unchanged, with Rθ now being Rτ .
The derivative is now taken with respect to τ rather than θ.

(26) σ̂2τ =
yTR−1τ y − yTR−1τ F (F TR−1τ F )−1F TR−1τ y

n− k
The posterior distribution is logarithmically transformed and then differ-

entiated with respect to τ .

(27) p(τ |y) ∝ π(τ)

(σ̂2)(n−k)/2det1/2(Rτ )det1/2(F TR−1τ F )

(28) ln(p(τ |y)) = ln(π(τ))− n− k
2

ln(σ̂2)− 1

2
ln |Rτ | −

1

2
ln
∣∣F TR−1τ F

∣∣
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The algorithm uses a Jeffrey’s prior of π(θ) ∝
∏D
j=1 1/θj , resulting in

π(τ) ∝ 1. The derivative is therefore:

(29)
∂ln(p(τ |y))

∂τ
=

−n− k
2σ̂2

ŨTτ
∂Rτ

∂τ
Ũτ−

1

2
Trace[R−1τ

∂Rτ

∂τ
]+

1

2
Trace[(F TR−1τ F )−1F TR−1τ

∂R

∂τ
R−1τ F ]

To compute the (F TR−1τ F )−1F TR−1τ
∂R
∂τ R

−1
τ F term, we must decompose

R−1τ using the Cholesky decomposition (7) and solve for F̃ (9), and then
proceed to take the QR decomposition as in (10).

(F TR−1τ F )−1F TR−1τ
∂R

∂τ
R−1τ F

= (F̃ T F̃ )−1F̃ TU−T
∂R

∂τ
U−1F̃

= T−1QTU−T
∂R

∂τ
U−1F̃

The above expression can be solved for using backwards and forwards
substitution due to that T and U are both upper triangular matrices.

Finally, we note that the derivative of our correlation matrix R with
respect to τ = ln(θ) is the following:

(30)
dR(x, x

′
)

dτi
= −eτi |xi − x′i|piR(x, x′) = −θi|xi − x′i|piR(x, x′)

dR2(x, x
′
)

dτidτj
= eτj |xj−x′j |pjeτi |xi−x′i|piR(x, x′) = θj |xj−x′j |pjθi|xi−x′i|piR(x, x′)

dR2(x, x
′
)

dτ2i
= −eτi |xi − x′i|piR(x, x′) + e2τi |xi − x′i|2piR(x, x′)

= eτi |xi − x′i|piR(x, x′)
[
eτi |xi − x′i|pi − 1

]
= θi|xi − x′i|piR(x, x′)

[
θi|xi − x′i|pi − 1

]
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11. Second Derivative in the FBI case

The second derivative in the FBI case is similar to the expression for
the Maximum Likelihood second derivative of the log-likelihood, with the
exception of there being an additional term as well as different degrees of
freedom.

(31)
∂2ln(p(τ |y))

∂τi∂τj
=

(
n− k
2(σ̂2)2

�
∂σ̂2

∂τi
�
∂σ̂2

∂τj
)−(

n− k
2σ̂2

�
∂2σ̂2

∂τj∂τi
)−1

2
Trace[R−1τ

∂2Rτ

∂τj∂τi
−R−1τ

∂Rτ

∂τi
R−1τ

∂Rτ

∂τj
]

+
∂

∂τj

[
1

2
Trace[(F TR−1τ F )−1F TR−1τ

∂Rτ

∂τi
R−1τ F ]

]
Since the trace function is a linear operator, this additional term can be

expressed as such,

∂

∂τj

[
1

2
Trace[(F TR−1τ F )−1F TR−1τ

∂Rτ

∂τi
R−1τ F ]

]
=

1

2
Trace[

∂

∂τj

[
(F TR−1τ F )−1F TR−1τ

∂Rτ

∂τi
R−1τ F

]
]

Where
∂

∂τj

[
(F TR−1τ F )−1F TR−1τ

∂Rτ

∂τi
R−1τ F

]
=

(F TR−1τ F )−1F TR−1τ
∂Rτ

∂τj
R−1τ F (F TR−1τ F )−1F TR−1τ

∂Rτ

∂τi
R−1τ F

−(F TR−1τ F )−1F TR−1τ
∂Rτ

∂τj
R−1τ

∂Rτ

∂τi
R−1τ F

+(F TR−1τ F )−1F TR−1τ
∂Rτ

∂τi
R−1τ

∂Rτ

∂τj
R−1τ F

+(F TR−1τ F )−1F TR−1τ
∂2Rτ

∂τi∂τj
R−1τ F

=

(FTR−1
τ F )−1FTR−1

τ

[
∂Rτ

∂τj
R−1
τ F (FTR−1

τ F )−1FTR−1
τ
∂Rτ

∂τi
+
∂Rτ

∂τi
R−1
τ
∂Rτ

∂τj
− ∂Rτ

∂τj
R−1
τ
∂Rτ

∂τi
+

∂2Rτ

∂τi∂τj

]
R−1
τ F

It is useful to note that

(
∂Rτ

∂τi
R−1τ

∂Rτ

∂τj
)T =

∂Rτ

∂τj
R−1τ

∂Rτ

∂τi
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12. Computing the Second Derivative in the FBI case

Recall the expression for the second derivative of the posterior in (31).
The evaluation of the first three terms in the expression is almost identical
to that of the maximum likelihood case, with the exception that we now
divide by n− k degrees of freedom. The derivative of the correlation matrix
R is indicated in (30). Finally, the fourth term is decomposed below so as
to avoid taking the inverse directly.

(32)

T−1QTU−T
[
∂Rτ

∂τj
U−1QQTU−T

∂Rτ

∂τi
+
∂Rτ

∂τi
R−1
τ
∂Rτ

∂τj
− ∂Rτ

∂τj
R−1
τ
∂Rτ

∂τi
+

∂2Rτ

∂τi∂τj

]
U−1F̃

Recall that we must take half the trace of the above term and add it to
our overall second derivative formula.

It has been observed in practice that the terms ∂Rτ
∂τi

R−1τ
∂Rτ
∂τj

and ∂Rτ
∂τj

R−1τ
∂Rτ
∂τi

will cancel each other out. However we have not yet been able to prove that
these two terms are equal in all cases.

Below we show how contour plots of the second derivative at vari-
ous τ values for a two-dimensional system correspond to finite-difference-
approximations of the same second derivatives.
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