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1 Introduction

Infantile beriberi (Vitamin B1/thiamine deficiency) is a serious health concern

in rural Cambodia. This is primarily due to limited thiamine in the diets of most

rural Cambodians. You have developed a thiamine-fortified version of fish sauce, a

common condiment used ubiquitously throughout Cambodia, intended to combat

this problem. To investigate the health benefits of this fortified fish sauce, two

randomized controlled clinical trials were performed on mothers and their children

in rural Cambodia.

Three concentrations of thiamin-fortified fish sauce were randomly assigned

and distributed to the test subjects, who consumed the fish sauce over a duration

of six months. Baseline and endpoint measures of blood/breast-milk thiamine con-

centrations were obtained for mothers and their children who consumed the fish

sauce. Some additional demographics were also collected for each respondent in-

cluding age, village, and occupation, among others. The general objective of these

clinical trials is to assess the effectiveness of fortifying fish sauce on combating

beriberi in rural Cambodia.

This report outlines approaches for the statistical analysis of these clinical

trials. How the data was collected is described, and how it may be explored is

explained. The nature of the missingness in the data is discussed, as well as how it

affects the analysis. Some basic (ANOVA) and more comprehensive (ANCOVA/

Linear Regression) approaches to analyzing the data are introduced, with a focus

on checking the model assumptions. The conditional change model is explained,

which is recommended for analysis of data with baseline and endpoint measure-

ments of the response of interest.

Beyond providing guidance for statistical analysis of the data, this docu-

ment addresses a number of previously posed questions. The implications of the

different assumptions for each model are explained. A method for investigating the

relationship between mother’s blood thiamine concentration, breast-milk thiamine
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concentration, and infant blood thiamine concentration is also included.

2 Data Description

Two separate randomized controlled clinical trials were carried out with moth-

ers and children in rural Cambodia. One trial enrolled pregnant mothers who gave

birth during the six-month duration of the clinical trial, while the other enrolled

mothers who had at least one child below the age of five. In both trials, families

were randomized into one of three treatment groups:

1. Control (C) - Families in this treatment group were given normal, unfortified

fish sauce;

2. Low-Concentration (LC) - Families in this treatment group were given fish

sauce fortified with a low concentration of thiamin;

3. High-Concentration (HC) - Families in this treatment group were given fish

sauce fortified with a high concentration of thiamin.

Details of the data collected for each trial are summarized in Table 1,

Table 1: Summary of Data for the two Clinical Trials

Non-Pregnant Pregnant

- 270 mothers at beginning
- Fish-sauce consumption data
- Various demographics
- Blood T concentration at
baseline and endpoint for mother
and child
- 197 mothers and 191 children
after accounting for missing data

- 90 mothers at beginning
- Fish-sauce consumption data
- Various demographics
- Mother’s blood T concentration
at baseline and endpoint
- Infant’s blood T concentration
at endpoint
- Mother’s breastmilk T
concentration at endpoint
- 77 mothers and 65 children
after accounting for missing data
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Altogether the clinical trials appear to have been executed well. For ex-

ample, it appears that the women were individually randomized to the treatment

groups, meaning that bias in treatment assignment is effectively eliminated. With-

out randomization, this would not be an experiment, and claims regarding causal-

ity (i.e. ingestion of fortified fish sauce increases blood thiamine) could not be

supported. Randomization may have been carried out across all 42 villages as a

single process, or rather within each village in a stratified fashion. If randomiza-

tion was carried out in a non-stratified fashion, there may be a more apparent

effect of village on the response variable.

It is important to identify the study population by asking who the women

from these 42 villages represent, as the results of the analysis can only be ex-

tended to that population. If the 42 villages are viewed as representative of all

rural Cambodian villages, the study population might be considered to be ‘Cam-

bodian mothers living in rural villages’. It is also important to identify whether

women in one village are ‘more alike’ than women in other villages as this would

suggest the necessity for inclusion of village as a factor in the analysis. Examina-

tion of this issue can be done by visual inspection as described in Section 2.3.

Aside from this, the primary issue regarding how the data was collected

concerns potential patterns in the ‘missingness’ of the data.

2.1 Missing Data

The main issue here is missing response variable data, which is a fundamental

concern. The issue of missing covariate data is secondary albeit still important.

The following section explains how to deal with missing values in the response

variables. In order to determine what can be done about missing data, it is im-

portant to first examine whether there is a pattern to what data is missing.

If the response data is ‘Missing at Random’, i.e, the missing response (blood

thiamine) values do not correlate with the treatment levels (fish sauce thiamine
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concentration), or in other words, the distribution of missing values is fairly uni-

form across the treatment levels, then a number of issues are avoided. In this case,

missing data can be omitted and analysis can be performed on only cases with

known outcomes without having to worry about non-response bias. Interpreta-

tion can be appropriately extended to the study population (of rural Cambodian

mothers who satisfy the specified eligibility criteria). Furthermore, imputation

methods for filling in missing values based on the distribution of available values

can be implemented effectively, as will be explained later.

Consider however, a situation where response data is missing more often for

families with low income than for families with high income. In this case, the

part of the sample with response data available is not representative of the study

population, and the results of a statistical analysis will likely be biased due to

the non-response bias present in the data. This means that interpretation of a

statistical analysis cannot properly be extended to the study population without

considering what sort of bias is introduced. However, given that data is available

for a number of covariates, regression imputation is still an option in this case,

and may reduce non-response bias (this will be discussed later)

It is beneficial to identify whether the missing response data appears to be

missing at random. This can be done by comparing the distributions of covariates

for the individuals with missing response data and for the individuals with avail-

able response data. For example, if the mean income for test subjects with missing

endpoint blood thiamine concentrations is clearly different from the mean income

for the remaining test subjects, the response data is not missing at random. The

question of whether there is a significant difference between the two means can

be assessed using a two sample t-test, however significance is not necessarily the

issue here. It should also be noted that since the exact reasons for why many of

the data points are missing are known, the mechanism by which data is missing

does not necessarily have to be investigated statistically. It may be possible to

make a judgement based on subject-matter expertise regarding whether the data
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is actually missing at random.

2.2 Imputation

Different methods exist for imputing data. The most basic method involves

imputation using the mean value of the dependent variable for the particular treat-

ment group. Consider a situation where the endpoint blood thiamine concentration

is missing for a particular mother in the control treatment group. This endpoint

blood thiamine concentration is imputed with the mean value over mothers in the

control treatment group; this is called ‘mean imputation’. This is a very basic

approach to imputation that can only be recommended if the data is missing at

random. If, for example, the data is not missing at random, and it is missing more

often for mothers from a particular town, or from a specific occupation, then this

pattern in the missing data will be retained even after mean-imputation.

Another method, regression imputation, predicts each missing value based

on the remaining covariates, by regressing the variable containing missing values

against the remaining covariates. For example, for a given mother with a missing

value for endpoint blood thiamine concentration, the missing blood thiamine con-

centration is imputed by evaluating the fitted regression equation at this mother’s

values of the remaining covariates (income, age, level of education, etc.). This

method helps eliminate some of the non-response bias associated with what data

is missing. For example, if data is missing often for mothers at a low education

level, the non-response bias implies that the data is more representative of mothers

with a high education level than those with a low education level. If regression

imputation is used to fill in those missing values, the non-response bias associated

with this unbalanced representation across education levels is corrected for, at

least to a certain extent. However, a different problem arises: since missing values

are predicted based on available covariates, this method artificially strengthens
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relationships that otherwise may not be very strong, as predictions will always lie

on the fitted regression line.

A possible remedy for this issue is to introduce an error term to the predic-

tions that is proportional to the regression residual error. This is called stochastic

imputation and unfortunately still results in some issues. For example, it could be

that the relationship between income and endpoint blood thiamine concentration

is not actually very strong for the entire population. However, if the relationship

is strong enough in the subset of non-missing data that is being used to predict

the missing data, then the strength of this relationship will persist in the imputed

dataset, even though it may be incorrect. In addition, the noise that is introduced

by using stochastic imputation may be too small, resulting in a similar (albeit

reduced) issue to that encountered via regression imputation. This method is rec-

ommended when data is missing for only the response variable.

When data is missing across all variables, multiple imputation is recom-

mended. This method assumes that the data come from a multivariate distribu-

tion (often the normal), and that missing values can occur for any variable. Often

this form of imputation will be implemented on a transformed scale for some of the

variables to make the multivariate distributional assumption reasonable. Multiple

imputation involves creating multiple imputed data-sets using stochastic impu-

tation. Each of these imputed data-sets is analyzed separately, and the results

are averaged over all these data-sets. Multiple imputation does not necessarily

attempt to estimate each missing value, but essentially simulates a sample of the

missing values. Multiple imputation does this in such a way so that valid statis-

tical inferences (e.g., finding valid confidence intervals) can still be made. This is

the main benefit of multiple imputation.

When the data is missing at random, there is no need for imputation, but

any of the imputation methods can still be implemented without risking introduc-

tion of bias. In either case, when the data is missing at random or not, stochastic

imputation is recommended if data is missing from only the response variable, and
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multiple imputation is recommended if data is missing from all variables. There

exist methods for implementing imputation in SPSS, and instructions for doing so

can be found in (1).

2.3 Exploratory Data Analysis

It is important to first check whether the presence of missing response variable

data correlates with other covariates, as this will give an indication of whether the

response is missing at random. One method for doing this involves contingency

tables, such as Table 2, where it can be seen that mothers with a higher level of

education are more likely to complete the study. Another option utilizes box-plots

as in Figure 1, where the distribution of household incomes is compared between

mothers who are missing the response or not. Visual inspection of such tables and

plots will clarify disparities between distributions of missing and non-missing data,

however, assessing significance of these differences requires hypothesis testing via

a two-sample t-test. Once again, significance is not necessarily the issue here. The

question is whether the assumption of randomly distributed missing values is rea-

sonable.

Table 2: Contingency table for mother’s education level versus missingness of
response, for non-pregnant trial. Individuals with a missing value for education
level are not included.

Response Primary-
School

Lower
Secondary-
School

Upper
Secondary-
School

Higher Ed-
ucation

Total

Available 96 (70.1 %) 57 (67.9%) 21 (80.1 %) 2 (100 %) 197
Missing 41 (29.9 %) 27 (32.1 %) 5 (19.9 %) 0 (0 %) 79
Total 137 84 26 2 249

Next, additional trends can be visualized. Most importantly, the distribution

of the response variable for different treatment groups can be illustrated using side

by side box-plots, as in Figure 2, from which it can be seen that the non-control
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treatment groups result in a markedly improved response. This is evident from

the fact that the IQRs (represented by the distance between the top and bottom

of the box in the boxplot) for the treatment groups do not overlap with that of

the control group.

Finally, relationships between the remaining variables and the response or

the treatment groups can be explored. One might want to investigate possible

relationships between treatment groups and other variables such as education, in-

come, or town, to ensure that randomization was properly implemented. Box-plots

are recommended for a continuous variable versus a categorical variable, and con-

tingency tables and bar charts are recommended for relating categorical variables.

Scatter-plots are useful for plotting pairs of continuous variables against one an-

other.

Figure 1: Boxplots for 12-month household income for the non-pregnant trial.
There is no strong indication of a relationship between income and missingness
from this plot.
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Figure 2: Boxplots for endpoint blood thiamine concentrations for the non-
pregnant trial. It can be seen that average endpoint blood thiamine concentration
is greater for the non-control treatment groups.

3 Statistical Questions

In this section, some preliminary statistical concerns are addressed. The pro-

posed approach that is outlined in Section 4 involves the use of ANOVA and

ANCOVA, so the following information is presented under the assumption that

these models will be used. In addition, this section assumes that individuals with

missing values on the variables being investigated have been removed or that val-

ues have been imputed, so that the analysis is based on a ‘complete’ data set.

3.1 Dependent Variables

It is important to specify that the dependent variable of interest should be the

difference between the endpoint and baseline thiamine concentrations (breastmilk
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or blood),

Ydiff = YEP − YBL,

where YEP is the endpoint thiamine concentration and YBL is the baseline thiamine

concentration. This way, individual effects are controlled for. If a particular in-

dividual is more likely to have a higher or lower blood thiamine concentration

than the typical individual, this systematic difference will be eliminated when we

consider the difference as our response.

To illustrate this, suppose that the systematic deviation of the blood thi-

amine level of individual i from µ, the mean blood thiamine level for their group,

is represented by an effect αi, both at baseline and at endpoint. Then the baseline

and endpoint blood thiamine concentration of individual i can be represented using

the mean baseline and endpoint blood thiamine concentrations plus the systematic

effect of individual i, plus a measurement error term εi:

Y EP
i = µEP + αi + εEPi ,

Y BL
i = µBL + αi + εBLi .

When we take the difference between the endpoint and baseline levels for individual

i, the αi values in Y EP
i and Y BL

i cancel out, and we have eliminated these individual

effects as a source of variation in the response. This is the reason for using the

difference between endpoint and baseline measurements as our dependent variable.

There are a couple of responses, however, where baseline values are not

available. These include the breast-milk thiamine concentrations for mothers and

the endpoint blood thiamine concentrations for infants in the pregnant-mother

clinical trial. In these cases, one possible approach for attempting to control for

systematic individual-level effects involves regressing against the mother’s baseline

blood thiamine concentration. This will be discussed in Section 3.3.
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3.2 Normality Assumptions

In ANOVA, ANCOVA, and linear regression, normality of the response is as-

sumed and, at least strictly speaking, required for making statistical inferences

(constructing confidence intervals, interpreting p-values, etc). This means that

the values of the response variable, conditional on the explanatory variables, are

assumed to be normally distributed. Although ANOVA, ANCOVA, and linear

regression are quite robust to modest violations of normality, it is nevertheless

recommended to investigate the appropriateness of the normality assumption.

Consider the case where thiamine concentration is the response variable and

the only predictor (explanatory variable) is the treatment group (fish-sauce thi-

amine concentration), as in ANOVA. The response data might then be represented

by the following linear model:

Yij = µi + εij,

where Yij, the response for the jth individual in the ith treatment group, is the

difference between endpoint and baseline blood-thiamine (as specified previously),

µi is the mean response for the ith treatment group, and εij are independent and

identically distributed error terms that have a mean of zero. The error term, εij,

is expressed as:

εij = Yij − µi.

Since our estimate for µi is Ȳi, the average response for the ith treatment group,

our observed residuals are:

rij = Yij − Ȳi.

The observed residual, rij, is an estimate of the error term, εij. A normal QQ-plot

of the observed residuals (see Figure 3) provides a check if it is reasonable to assume

that the error terms are independent and identically normally distributed. The

QQ-plot will look similar to a straight line if the residuals are normally distributed.
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For more complicated models involving more than one explanatory variable, such

as ANCOVA, the residuals are expressed slightly differently, but the same general

idea applies.

Figure 3: Normal QQ-plot of the residuals from an ANOVA model with mother’s
blood thiamine concentration difference as the response and treatment group as
the explanatory variable, exemplifying normally distributed residuals. This plot
was generated using your data from the non-pregnant trial.

When the residuals are drastically non-normal, a Box-Cox transformation

can be applied to make them closer to normal. The Box-Cox method finds a

transformation that results in approximately normally distributed residuals, but

this can hinder interpretation of the results of the analysis. For example, suppose

that from an ANOVA context, the Box-Cox method suggests a transformation of

the dependent variable, Y , by a power of 1.5 will result in residuals that can be

reasonably approximated as normally distributed. ANOVA on these transformed

responses no longer tests the differences between the means of the dependent

variable; instead ANOVA now tests for differences between the means of Y 1.5.

If ANOVA finds significant differences between these new means, it is difficult to

extend this interpretation to the un-transformed data.

Due to results such as in Figure 3, which show that the observed residuals
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appear approximately normal, transformation of the data is not recommended.

However, to have confidence in subsequent statistical inferences, it is important to

show that the residuals can reasonably be assumed to be normally distributed.

3.3 Differences in Baseline Means across Treatments

Randomization of the test subjects to the treatment groups is meant to control

for selection bias among test subjects. This means that test subjects are not more

or less likely to be placed in a particular treatment group based on the values of

their other covariates. For example, after randomization, it is not expected that

mothers with high baseline blood thiamine are more likely to be in the control

treatment than mothers with low baseline blood thiamine. Sometimes, even after

randomization, such differences between treatment groups are still observed due to

chance. As differences at baseline in covariates that are predictive of the response

can result in selection bias, preliminary exploration of the data should include

visual examination to identify such differences (using box-plots).

There is another issue regarding differences in baseline measurements across

the treatments. In this study, for example, it may be that individuals with high

baseline blood thiamine concentrations are less likely to have an increase in blood

thiamine by the endpoint even after consumption of fortified fish sauce. This

should not mean that the treatment does not work, as the thiamine levels of the

individual were already high enough to begin with and the treatment may not

have been necessary for that individual.

To deal with this issue, the baseline measurements should be included as a

covariate in the analysis, leading to what is sometimes called the conditional change

model. This allows for the baseline measurements to account for some of the varia-

tion that cannot be attributed to the treatment effects. As mentioned earlier, there

are certain cases where baseline measurements are not available (mother’s breast-

milk thiamine and infant blood thiamine). In these cases, it might make sense to
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add mother’s baseline blood thiamine as a covariate, as it is likely indicative of the

theoretical baseline thiamine concentrations for mother’s breastmilk thiamine and

infant blood thiamine concentrations. Implementing this in the analysis requires

the use of ANCOVA or linear regression models, rather than the simpler ANOVA.

4 Proposed Analysis

Before describing any statistical models, it is useful to first note the differ-

ent available response (dependent) variables. There are a total of five different

response variables that can be used, summarized in Table 3 below. Each of these

continuous response variables will require a separate but similar analysis. The

response will be referred to as “Thiamine Concentration” in all of the examples

provided below; this can refer to any one of the responses listed in Table 3.

Table 3: Summary of response variables for the two clinical trials, where the
number of available responses are indicated by ‘n’.

Non-Pregnant Mothers Pregnant Mothers

- Endpoint minus Baseline Blood
Thiamine Concentration for
Mothers (n = 197)

- Endpoint minus Baseline Blood
Thiamine Concentration for
Children (n = 191)

- Endpoint minus Baseline Blood
Thiamine Concentration for
Mothers (n = 77)

- Endpoint Blood Thiamine
Concentration for Children
(n = 65)

- Endpoint Breast-Milk
Thiamine Concentration for
Mothers (n = 67)
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4.1 ANOVA

Analysis of Variance (ANOVA) is a simple form of linear regression that can be

used to assess differences between the means of a response in different categories.

We describe the details of ANOVA for the completely randomized design used in

your two clinical trials. The assumptions for ANOVA are similar to that of a linear

regression model:

1. Independence of responses;

2. Approximate normality of the responses;

3. Equality of variances of the responses.

The randomization in your clinical trials bolsters the assumption that the obser-

vations are independent by balancing both known and unknown influential factors

in the assignment of the treatments to the subjects. Nevertheless, known factors

may be unbalanced after randomization, and therefore it is useful to check this

independence assumption by plotting the residuals against other covariates. If a

pattern in the distribution of residuals is observed, it may be that this indepen-

dence assumption is being violated. For example, randomization is supposed to

balance the age distribution of mothers across the different treatment groups. It is

important to check if the distribution of mother’s age is similar for each treatment

group, particularly if the mother’s age is predictive of the response.

Normality of the residuals should be a reasonable approximation to rely on

the confidence intervals for the estimated coefficients, or the corresponding p-values

(discussed later) that the software will provide when fitting a regression model.

Section 3.2 described how to check this assumption using a QQ-plot.

Equality of variances of the responses in each treatment group is difficult

to test. In your randomized controlled trial setting, the group sizes should be

more-or-less the same, in which case this assumption is not so critical for ANOVA.

Hence, visual inspection of the relative spread of the observations in each treatment

17



group via box-plots should suffice. More detail on this assumption is provided in

Section 4.3 on linear regression.

In the context of your design, ANOVA corresponds to fitting a simple lin-

ear model with Thiamine Concentration as the dependent variable and treatment

group as the independent variable, resulting in the average response in each treat-

ment group as the predicted value for the mean Thiamine Concentration for each

treatment group. The differences between each of the individual Thiamine Con-

centrations and the predicted mean Thiamine Concentration for the group are the

‘residuals’ and are estimates of the random errors εij, which are supposed to be

normally distributed with a mean of zero and a common variance. If µi is the true

(unknown) mean Thiamine Concentration for the ith treatment group, the null

hypothesis (H0) assessed by the ANOVA is:

H0 : µ1 = µ2 = µ3

with the alternative hypothesis (HA) being that at least one of µ1, µ2, and µ3 is

not equal to the others.

As it is easy to implement ANOVA (for example in SPSS) without under-

standing what is being done, a short qualitative explanation is provided. ANOVA

attempts to explain the total variability in the response by partitioning the ‘Total

Sum of Squares’ into the sum of the variability that can be explained by differences

in average levels corresponding to the treatment groups (the Sum of Squares Treat-

ments) and the remaining variability that corresponds to random error (the Sum

of Squares Residual). The ratio of the corresponding Mean Squares (Mean Square

= Sum of Squares / degrees of freedom) is an ‘F-statistic’, which is compared to an

F-distribution with the same degrees of freedom. The degrees of freedom (df) are

determined by the design. In your case, dftreatments = 2 and dfResidual = n−3 where

n is the number of observations of the response being analysed. This comparison

yields a p-value, which is the probability under the null hypothesis of observing a

value of the F-statistic at least as extreme as that for the data. If the p-value is
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small, say smaller than some specified significance level α (often 0.05), we reject

the null hypothesis at significance level α meaning there is strong evidence of a

difference between the mean response values for the different treatment groups.

The main issue with this simple ANOVA approach is that it does not incor-

porate additional covariates that could potentially explain some of the variation

in the data, thereby leading to a more precise assessment of the treatment effects.

Adding covariates to the model would also allow for implementation of the condi-

tional change model, described in Section 3.3. In addition, even if the normality

assumption for the residuals is not reasonable under a simple linear model, such

as that corresponding to the ANOVA approach, there is a chance that it will be

reasonable under a more complex model with more covariates. For these reasons,

we recommend implementing an ANCOVA (Analysis of Covariance) model to test

the previously stated hypothesis.

4.2 ANCOVA

ANCOVA is an extension of ANOVA where additional covariates are added

that may be affecting the response variable. Other covariates that may explain

some of the variation in Thiamine Concentration, such as income or age, can be

incorporated in the analysis via ANCOVA. Furthermore, ANCOVA can control

for baseline differences across treatments by the addition of baseline Thiamine

Concentration as a covariate, thereby implementing the conditional change model.

The assumptions for this model are the same as for ANOVA, with the additional

assumption that the dependent variable is linearly related to each of the indepen-

dent variables. As using ANCOVA will provide a better assessment of differences

across the treatment groups than ANOVA, in that additional sources of variability

will be accounted for, this method is recommended for your hypothesis testing.

Performing ANCOVA in SPSS is described in (2).
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4.3 Linear Regression Analysis

Linear regression will fit a model for predicting a continuous response variable

given a set of covariates. The assumptions for linear regression are the same as

those for ANOVA and ANCOVA, as specified above.

Recall that equality of the variances of the residuals is difficult to test for,

and therefore visual inspection will have to suffice. In this case, it makes sense

to plot the residuals against the fitted values to check that the distribution of

the residuals against the fitted values is seemingly random, with no presence of

a ‘funnel’ shape. The plot in Figure 4 is an example for which the variances of

residuals appear close enough to being equal for the equality assumption to be

reasonable.

Figure 4: Plot of randomly distributed residuals against fitted values from a linear
model

An important consideration for linear regression is that highly correlated

independent variables should not be included in a model. The reason is that this

will result in imprecise estimation of the regression coefficients (discussed later) for
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these covariates. For example, the variable “Any − School −Woman”, a binary

variable corresponding to whether a mother has had any education, is expected

to be highly correlated with the variable “Highest − School −Woman”, which

indicates the level of education of each mother. In the same vein, the variable

corresponding to the total number of fish sauce bottles received throughout the

study may be highly correlated with the variable corresponding to the total num-

ber of fish sauce bottles consumed throughout the study. In both of these cases,

if highly correlated, only one of each of these variables should be included in the

linear model.

Interpreting the coefficients that are obtained by fitting a linear model is the

final step of the analysis. For categorical variables, such as the treatment group

factor, one of the groups will always be assigned as the reference group and will not

have a coefficient. This means that the coefficients for the other groups describe

a comparison to that reference group. Consider the linear model coefficients in

Table 4: although there are three treatment groups, coefficients appear only for

the low-concentration group and the high-concentration group. The coefficients

for these groups correspond to the expected difference from the control group,

which is the reference group. For example, from Table 4, we see that the expected

adjusted Thiamine Concentration difference for mothers in the low-concentration

Thiamine-fortified fish sauce treatment group is approximately 81 units higher

than for mothers in the control group. This can be interpreted as: if there are

two mothers who have identical values of the other covariates, where one is as-

signed the low-concentration fish sauce, and the other is assigned the unfortified

fish sauce, the Thiamine Concentration (in this case mother’s blood thiamine)

of the mother who was assigned the low-concentration fish sauce is expected to

be approximately 81 units higher than that of the mother who was assigned the

unfortified fish sauce, after six months. Note that because the baseline value of

the response is included in the model (BL TDP Woman), interpretation can be in

terms of Thiamine Concentration after six months rather than in terms of change
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from baseline after six months.

The remaining columns in Table 4 all provide further descriptions of the

coefficient values estimated by the linear model. The standard error for the coef-

ficient corresponds to the variability of the estimated coefficient. If this standard

error is high relative to the coefficient estimate, the magnitude of the t-value will

be small, and the confidence interval for the coefficient will be quite wide. This

is easier to understand if we consider only the p-value, which will in turn also

be large if the standard error is large compared to the coefficient estimate. Each

p-value in this case corresponds to a hypothesis test where the null hypothesis is

that the true value of that coefficient is actually equal to zero. P-values less than

some significance level α provide strong evidence that the coefficient is not equal

to zero; that is, that the corresponding covariate has a (linear) relationship with

the response. The smallest p-values in Table 4, corresponding to the two treat-

ment levels, are both less than 0.001. There is therefore strong evidence that the

treatment effect coefficients are not equal to zero. The coefficient corresponding to

the total number of fish sauce bottles consumed, on the other hand, has a p-value

of approximately 0.185. This high p-value indicates that, when the effects of the

other covariates included in the model are taken into account, these data provide

no evidence to suggest that the number of fish sauce bottles consumed has an

effect on the Thiamine Concentration.

From Table 4, it is evident that the treatment effects are significant. Fur-

thermore, the high concentration treatment group coefficient is slightly larger,

suggesting that the effect of this treatment group might be stronger. However,

upon inspection, the difference between the coefficients for the low-concentration

and high-concentration treatment groups is very much smaller than the standard

errors for both of these coefficients. This indicates that the difference between

these coefficients is negligible; that is, the low-dose and high-dose treatments ap-

pear to be roughly equally effective. In other cases, where the difference between

coefficients is not obviously negligible, hypothesis testing of whether there is a
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Table 4: Sample output from a linear model for the non-pregnant trial with dif-
ference between endpoint and baseline mother’s blood thiamine concentration as
the dependent variable.

Coefficients Estimate Std. Error t-value p-value
(Intercept) −17.01248 33.65077 −0.506 0.61384
ArmLC - 2g/L 81.34797 11.22746 7.245 < 0.001
ArmHC - 8g/L 82.96653 11.76621 7.051 < 0.001
BL TDP Woman −0.26608 0.08781 −3.030 0.00284
Village Number 0.75665 0.37635 2.011 0.04600
Highest School Woman2. Lower
Secondary school

−5.55653 10.67740 −0.520 0.60348

Highest School Woman3. Upper
Secondary school

−20.23888 15.27421 −1.325 0.18698

Highest School Woman4. Higher
education

−122.40843 44.51842 −2.750 0.00663

BL Woman Age 1.32298 0.77766 1.701 0.09077
FSbottles CONSUMED 1.37384 1.03192 1.331 0.18490

difference between the two corresponding treatments can be done by fitting an

additional model that considers the responses from the low-dose and high-dose

treatment groups as being from one treatment group. We refer to this model as

the reduced model, as it is nested within the original model. The output of AN-

COVA fits (as in Table 4) will provide values for the ‘Sum of Squares Residuals’

(SSR) for each of the models. In order to test the null hypothesis H0 : β1 = β2

against HA : β1 6= β2, we compare the two models using the F-statistic:

F =
(SSRreduced − SSRoriginal)

SSRoriginal/(n− p− 1)

where p is the number of coefficients in the original model (in the case of Table 4

the number of coefficients is 9). The value obtained for the F-statistic is compared

to Fα,v1,v2 , the F-value at significance level α with v1 = n − p − 2 and v2 =

n − p − 1 degrees of freedom. If F ≥ Fα,v1,v2 , we reject H0 at significance level α

and conclude that there is strong evidence that the coefficients are not equal. It

should be noted that the degrees of freedom v1 and v2 correspond to n minus the

number of coefficients (including the intercept) in the reduced and original models
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respectively.

4.3.1 Intent-to-Treat versus As-Treated Analyses

Under an ‘Intent-to-Treat’ analysis, there is an underlying assumption that

every mother consumes the amount of fish sauce in the number of bottles dis-

tributed. This is the type of analysis we have described so far in this report. How-

ever, there may be a discrepancy between the amount of fish sauce distributed

and the amount of fish sauce actually consumed by each mother. An ‘As-Treated’

analysis uses the data collected for the number of fish sauce bottles each mother

indicated she consumed to determine the ‘dosage’ actually received. This approach

assumes that the self-reported data is reliable.

For the ‘As-Treated’ analysis, we suggest regressing Thiamine Concentration

against the covariate for the total fish sauce reported as consumed throughout the

study. One option is to consider the total fish sauce consumed as a continuous

covariate, however, this would require more complicated models (e.g., perhaps us-

ing quadratic terms) in order to find the optimal dose of fish sauce. Therefore we

recommend separating the data for the total fish sauce reported as consumed into

an ordered factor with a small number of levels, such as:

1. 1-5 bottles consumed;

2. 5-10 bottles consumed;

3. 10-15 bottles consumed;

4. more than 15 bottles consumed.

Something like this would ease the process of finding the optimal dose of fish sauce;

you could then examine which of these dosages yields the best response using the

analysis approaches already described.
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4.3.2 Relationships between Responses

To investigate the relationship between breast-milk, child’s blood, and mother’s

blood Thiamine Concentrations, three different linear regression models can be fit

with each of the specified variables as a response and the remaining as covariates.

Other covariates can be included in each model if they are suspected to have an

effect on the given response. For example, say child’s blood Thiamine Concen-

tration is being regressed against mother’s blood Thiamine Concentration. One

might want to include the age of the mother as a covariate in this model, as it

may have an effect on the relationship between these Thiamine Concentrations.

Interpretation of each of these models as above should provide an understanding

of how the three variables are related.

5 Conclusion

It is important to perform exploratory data analysis to better understand

the trends in the response variable between treatment levels. Differences between

response distributions should be visualized before they are tested statistically.

It is also essential to understand the patterns of the missing data. Imputation,

specifically multiple imputation, is useful for filling in missing values, and can

sometimes help eliminate some non-response bias. ANCOVA should be used to

test if there are significant differences between the treatment levels. In terms

of an optimal dose of Thiamine in the fish sauce, informal and formal methods

for assessing the difference between the low concentration and high concentration

doses are provided.
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